THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010 I/J University Mathematics 2015-2016
 Problem Set 4

1. Evaluate the following limits.
(a) $\lim _{x \rightarrow+\infty}\left(\frac{x+1}{x-1}\right)^{x}$;
(b) $\lim _{x \rightarrow+\infty}\left(\frac{x^{2}-2 x-3}{x^{2}-3 x-28}\right)^{x}$;
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{array}{ccc}
\frac{|x-4|}{4-x} & \text { if } & x \neq 4 \\
0 & \text { if } & x=4
\end{array}\right.
$$

(a) Sketch the graph of the function $f(x)$.
(b) Is $f(x)$ continuous at $x=4$? Why?
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{array}{cc}
x^{2} \cos \left(\frac{1}{e^{x}-1}\right) & \text { if } \quad x \neq 0 \\
0 & \text { if } \quad x=0
\end{array}\right.
$$

Show that $f(x)$ is continuous at $x=0$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function that satisfies

- $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$;
- $f(x)$ is continuous at $x=0$ and $f(0) \neq 0$.
(a) Show that $f(0)=1$.
(b) Hence, show that $f(x)$ is continuous on \mathbb{R}.

5. (Challenge) Let $f(x)$ be a continuous function defined for $x>0$ and for any $x, y>0$,

$$
f(x y)=f(x)+f(y)
$$

(a) Find $f(1)$.
(b) Let a be a positive real number. Prove that for any rational number r,

$$
f\left(a^{r}\right)=r f(a) .
$$

(c) It is known that for all real number x, there exists a sequence $\left\{x_{n}\right\}$ of rational numbers such that $\lim _{n \rightarrow \infty} x_{n}=x$.
Show that for all $x>0$,

$$
f\left(a^{x}\right)=x f(a)
$$

where a is a positive real constant. Hence, prove that for all $x>0$,

$$
f(x)=c \ln x
$$

where c is a constant.

